5 research outputs found

    Adaptive Algorithms For Classification On High-Frequency Data Streams: Application To Finance

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the nonstationary nature and the likelihood of drastic structural changes in financial markets. The most recent literature suggests the use of conventional machine learning and statistical approaches for this. However, these techniques are unable or slow to adapt to non-stationarities and may require re-training over time, which is computationally expensive and brings financial risks. This thesis proposes a set of adaptive algorithms to deal with high-frequency data streams and applies these to the financial domain. We present approaches to handle different types of concept drifts and perform predictions using up-to-date models. These mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The core experiments of this thesis are based on the prediction of the price movement direction at different intraday resolutions in the SPDR S&P 500 exchange-traded fund. The proposed algorithms are benchmarked against other popular methods from the data stream mining literature and achieve competitive results. We believe that this thesis opens good research prospects for financial forecasting during market instability and structural breaks. Results have shown that our proposed methods can improve prediction accuracy in many of these scenarios. Indeed, the results obtained are compatible with ideas against the efficient market hypothesis. However, we cannot claim that we can beat consistently buy and hold; therefore, we cannot reject it.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Gustavo Recio Isasi.- Secretario: Pedro Isasi Viñuela.- Vocal: Sandra García Rodrígue

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Get PDF
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant

    Incremental Market Behavior Classification in Presence of Recurring Concepts

    Get PDF
    In recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the non-stationary nature and the likelihood of drastic structural or concept changes in the markets. Traditional systems are unable or slow to adapt to these changes. Ensemble-based systems are widely known for their good results predicting both cyclic and non-stationary data such as stock prices. In this work, we propose RCARF (Recurring Concepts Adaptive Random Forests), an ensemble tree-based online classifier that handles recurring concepts explicitly. The algorithm extends the capabilities of a version of Random Forest for evolving data streams, adding on top a mechanism to store and handle a shared collection of inactive trees, called concept history, which holds memories of the way market operators reacted in similar circumstances. This works in conjunction with a decision strategy that reacts to drift by replacing active trees with the best available alternative: either a previously stored tree from the concept history or a newly trained background tree. Both mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The experimental validation of the algorithm is based on the prediction of price movement directions one second ahead in the SPDR (Standard & Poor's Depositary Receipts) S&P 500 Exchange-Traded Fund. RCARF is benchmarked against other popular methods from the incremental online machine learning literature and is able to achieve competitive results.This research was funded by the Spanish Ministry of Economy and Competitiveness under grant number ENE2014-56126-C2-2-R

    A survey on machine learning for recurring concept drifting data streams

    Get PDF
    The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time

    An online classification algorithm for large scale data streams: IGNGSVM

    Get PDF
    Stream Processing has recently become one of the current commercial trends to face huge amounts of data. However, normally these techniques need specific infrastructures and high resources in terms of memory and computing nodes. This paper shows how mini-batch techniques and topology extraction methods can help making gigabytes of data to be manageable for just one server using computationally costly Machine Learning techniques as Support Vector Machines. The algorithm iGNGSVM is proposed to improve the performance of Support Vector Machines in datasets where the data is continuously arriving. It is benchmarked against a mini-batch version of LibSVM, achieving good accuracy rates and performing faster than this
    corecore